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Abstract

The recent discovery of pure boron nanotubes raises questions about their detailed
atomic structure. Previous simulations predicted tubular structures with smooth or
puckered surfaces. Here we present some novel results based on ab initio simulations
of bundled single–wall zigzag boron nanotubes (ropes). Besides the known smooth
and puckered modifications, we found new forms that are radially constricted, and
which seem to be energetically superior to the known isomers. Furthermore, those
structures might be interpreted as intermediate states between ideal tubular phases
and the known bulk phases based on boron icosahedra.
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1 Introduction

Besides the well known carbon nanotubes (CNTs) [1] there are various other
inorganic materials forming nanotubular compounds [2,3]. The most promi-
nent examples are BN [4] or MoS2 [5] nanotubes, which have already been
synthesized. But theory also predicts a number of nanotubular materials, like
e.g. metal–boron nanotubes [6,7] or the structurally related CaSi2 nanotubes
[8], which are still waiting for their experimental verification. Among those
novel nanomaterials predicted by theory were nanotubes made of pure boron
[9,10]. The stability and the mechanical properties of boron nanotubes (BNTs)
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should be quite similar to C– and BN–nanotubes [11]. But from the electronic
point of view, BNTs should always be metallic, independent of their structure
[11], in contrast to CNTs, which are either semiconducting or metallic, de-
pending on their radius and chirality [12]. Another difference between CNTs
and BNTs is the potential of the latter to form covalent intertubular bonds
[6], while the CNTs may only bind to each other via van der Waals types
of interactions [12]. Very recently Ciuparu et al. [13] successfully synthesized
BNTs and thus confirmed the suggested existence of BNTs, after similar ef-
forts had already lead to the discovery of novel types of boron nanorods by
various other groups [14,15,16,17].

Nanotubes are geometrically constructed by rolling up a rectangular sheet that
has been cut from a (quasi–)planar structure. For CNTs this planar structure
will be the honeycomb lattice (Fig. 1a) [12], while for BNTs the reference struc-
ture is a quasiplanar sheet, where the boron atoms form a puckered hexagonal
lattice (Fig. 1b) [11]. Due to differences in the bond lengths (aC−C = 1.44 Å
and aB−B ≈ 1.65 . . . 1.85 Å) the boron and carbon sheets have different sizes.
All BNTs discussed in this paper are closely related to the structure of CNTs,
as they may be classified in a standard fashion employing a pair of integers
(N, M). The latter determine the so–called wrapping vector W = Na1+Ma2,
where a1 and a2 are basis vectors for a honeycomb lattice. It should be men-
tioned that BNTs may as well be classified using the hexagonal basis vectors
b1 and b2 (see Fig. 1b), but we certainly prefer the use of the well–established
classification scheme known from CNTs. For a detailed discussion of the geo-
metrical construction of nanotubes see [12].

The existence of BNTs may be looked upon as special case of a more general
Aufbau principle for boron clusters and bulk materials proposed by Boustani
[18]. According to this principle, stable boron clusters can be constructed from
two basic units: a pentagonal B6 and a hexagonal B7 pyramid. One structural
paradigm is α–boron, one of the well–known bulk phases of pure boron, which
is ”built” from pentagonal pyramids forming B12 icosahedra. In the bulk phase,
the icosahedral clusters occupy the vertices of a rhombohedral unit cell, and
the resulting structure is further stabilized by complex multi–center bonds
between the icosahedra. As for the hexagonal pyramidal units, the Aufbau

principle suggests that they may be combined to form convex or quasiplanar
clusters, which give raises to more complex modifications, like spheres [19],
sheets [20], or the above mentioned nanotubular forms of boron.

In summary, the boron atoms in α–boron have an inverse umbrella six–fold co-
ordination, while the tubular modifications mainly exhibit a distinctive quasi-
planar six–fold coordination. In the following we will report about new modifi-
cations of zigzag boron nanotubes, which might be interpreted as intermediate
structures between ideal nanotubular forms and the known bulk phases of pure
boron, emphasizing the general validity of the Aufbau principle.
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2 Theoretical Methods

In order to simulate nanotube bundles (ropes), we have to construct a solid
composed of suitable supercells. Each supercell contains a single small boron
ring. By piling up the supercells in the z–direction (with lattice constant c) we
build up an infinite nanotubular structure. Within the xy–plane, we arrange
the nanotubes side by side on a hexagonal lattice with lattice constant a.

The lattice constant c depends on the chirality and the lattice type of the nan-
otube [12], and it is particular small for zigzag 1 systems. Figure 1 illustrates
that c = ca derived from the honeycomb lattice (basis vectors a1 and a2)
leads to a supercell that is three times bigger than one constructed from the
basis vectors b1 and b2 (ca = 3cb). After a few simulations it turned out that
the results obtained from these two models are identical, and that all known
properties of BNTs can be well reproduced with the help of the smaller su-
percells. Therefore most of the calculations where performed with c = cb (see
Tab. 1).

Due to its electron deficient character [21] boron has a complicated and ver-
satile chemistry, as indicated above. The only theoretical tools that allow to
describe its chemistry properly are first principles calculations [18].

To this end, we used the VASP ab initio package, version 4.4.5 [22,23]. The
latter is a density functional theory [24] based ab initio code using plane wave
basis sets and a supercell approach to model solid materials. During all sim-
ulations, the electronic correlations were treated within the local–density ap-
proximation using the Perdew–Zunger–Ceperley–Alder exchange–correlation
functional [25,26], and the ionic cores of the system were represented by ul-
trasoft pseudopotentials [27] as supplied by G. Kresse and J. Hafner [28].

With the help of the VASP program, one can determine interatomic forces
and relax the different degrees of freedom for a given decorated unit cell, and
eventually detect atomic configurations which correspond to (local) minima on
the total energy hypersurfaces. In order to carry out those structure optimiza-
tions effectively, we employed a preconditioned conjugate gradient algorithm
[29] and allowed all degrees of freedom to relax (i.e. the complete set of atomic
configurations as well as the supercell parameters). The total energy and the
k–point sampling were converged such that changes in the total energies were
less than 10−3 eV and interatomic forces were less than 0.04 eV/Å.

The versatile chemistry of boron is reflected in a complicated energy hypersur-
face, which is is full of local minima. This is a particular problem for structure
optimizations that aim at detecting structures corresponding to global minima

1 Zigzag means (N,M) = (N, 0).
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on those energy hypersurfaces, because the standard techniques like the con-
jugate gradients method used in this study are only able to find local minima.
In order to approach the most stable structures, we developed a procedure
where the starting configurations were prerelaxed with lower numerical pre-
cision until a (local) minimum was found, and afterwards we continued the
relaxations with optimal precision. A reduced precision leads to somewhat im-
precise interatomic forces, but we found that such a procedure would result
in the scanning of the energy hypersurface over a wider range. This technique
significantly improves the optimizations, but the results still depend on the
starting configurations. Therefore we carefully examined each system using
different relaxation procedures and a number of distinct initial structures,
with smooth or puckered surfaces.

We studied (6,0), (9,0), and (10,0) zigzag systems, and obtained different
isomers, which also vary in their cohesive energies 2 . Depending on the struc-
ture of the surface we discriminate between smooth (A), puckered (B) and
constricted (C) isomers. The related structural data, the parameters of the
supercells, the range of bond lengths and the cohesive energies of all relaxed
structures are given in table 1. A top view of all isomers placed around the
center of their supercells can be found in Fig. 2, 3, and 4. In these figures the
big spheres stand for the upper boron atoms and the small ones for the lower
boron atoms (with respect to the z–direction). The various lines between the
boron atoms point in the direction of the nearest neighbors 3 : a thin line sym-
bolizes a single neighbor, and a thick line two nearest neighbors. According to
the structures considered here and our experience with other boron systems
we found that it is chemically reasonable to interprete distances ≤ 1.9 Å as
bonds of mainly covalent character.

The structure dubbed (6,0)A was prerelaxed with the Brillouin zone being
sampled by a 3x3x5 grid, and finished with a 5x5x11 grid. Structure (9,0)A
was completely relaxed on a 4x4x4 grid. For the structures (9,0)B and (9,0)C
a 2x2x2 sampling was used for the prerelaxation, and a 5x5x5 mesh to finish
those simulations. A 5x5x11 grid was used to finish structure (10,0)B, with a
5x5x5 mesh used to carry out the prerelaxation. Finally (10,0)C was prere-
laxed with 3x3x5, and finished with a 5x5x11 grid. The cutoff energy for the
expansion of single electron wave function in terms of plane waves was 257.1
eV for structure (10,0)C, and 321.4 eV for all the other BNTs.

2 The cohesive energy was calculated by dividing the binding energy per supercell
by the number of atoms contained within that supercell.
3 Only nearest neighbor distances up to 2 Å were taken into account.
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3 Results

A general feature of all nanotubes considered in this study is the six–fold
intratubular coordination with rather typical B–B bond lengths (see Tab.
1, column aintra

B−B
). Furthermore all BNTs showed a metallic density of states,

confirming the results in [11]. The rotational Cn–symmetry of the tubes follows
from a simple rule: n is the greatest common divisor of the sixfold symmetry
imposed through the arrangement on a hexagonal superlattice and the N–fold
symmetry of the BNT itself given by the (N, 0) structure type.

For the relaxation of the (6,0) system, we used different relaxation schemes,
and smooth or puckered initial structures, as well as different supercell heights
(see above). All structural optimizations led to the same final structure, which
is displayed in Fig. 2. It has a smooth surface and no intertubular bonds. The
radius of (6,0)A is 3.03 Å and the intertubular distance is 2.12 Å.

The energy surface of the (9,0) system seems to be more complex, and we
found three distinct isomers, which are displayed in Fig. 3. Similar to (6,0)A,
structure (9,0)A has a smooth surface and no intertubular bonds. The radius
is 4.57 Å and the intertubular distance is 2.16 Å. The second isomer (9,0)B
has a puckered structure described in [11], which results from rolling up a
regular quasiplanar surface on a cylinder. There are no intertubular bonds; the
closest distance of apex atoms to an adjacent BNT is 2.84 Å. The new and
most stable modification (9,0)C is qualitatively different from the previous
ones, because it is radially constricted, and cannot be generated by simply
rolling up a quasiplanar reference structure. The constriction generates three
bumps, each of them formed by five atoms. Furthermore there are six atoms
per supercell that have two neighbors in adjacent supercells, which are 1.95 Å
apart (indicated by thick lines pointing outwards in Fig. 3C).

For the (10,0) system we only found two isomers. It was not possible to locate
an A–type structure. During the relaxation procedure the hexagonal symmetry
of the supercells was broken, and the lattice systems changed to monoclinic.
The smaller angle of the (10,0)B supercell is 63.8◦, and the one for (10,0)C is
56.7◦ (for a hexagonal supercell this angle would be 60◦). Structure (10,0)B
is puckered, but its cross section is elliptical and not circular as for the other
BNTs considered so far; it has two intertubular bonds per supercell, which
raise the coordination number of those atoms to seven. Furthermore each BNT
is surrounded by 20 atoms per supercell, which belong to adjacent nanotubes
that are 1.96 Å apart (see the outward pointing lines in Fig. 4B). The cross
section of the more stable and constricted isomer (10,0)C deviates significantly
from circular or elliptical shapes. The structure has four bumps, each formed
by five atoms. Furthermore it has four intertubular bonds per supercell and
four nearest neighbors in adjacent supercells in a distance of 2.00 Å.
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The bumps found within the (9,0)C and (10,0)C structures are formed by five
boron atoms per supercell, which are sitting on the corners of an imaginary
zigzag 6–ring, similar to the six apex atoms of a B12 icosahedra seen along
each of its 3–fold axes. Therefore the constricted nanotubes might be inter-
preted as intermediate structures between the ideal (puckered) nanotubular
structures reported before and the well–known bulk phases of boron based on
B12 icosahedra. The more as previous ab initio studies [30] showed that in
principle, B12 icosahedra may be fused to form extended nanotubular 6–ring
systems similar to the columnar wings of the (9,0)C and (10,0)C structures.

4 Conclusions

We explored the geometry, energetics and basic chemical properties of boron
nanotube bundles (ropes) of zigzag type.

Our results confirm that zigzag BNTs tend to have puckered surfaces [11]. The
(9,0)B isomer is clearly more stable than the smooth A–type isomer, but for
the (6,0) system we were unable to find a puckered isomer. One could naively
assume that for small radii a surface tension is smoothening the BNT. But the
surprising fact that the (9,0)A isomer is lower in binding energy than (6,0)A
obviously does away with this simple–minded conjecture (see the discussion
about strain energy in [12]).

Nevertheless, the A– and B–type isomers basically confirm previous results
known for (nanotubular) cluster systems [9,31,11]. For periodic systems con-
taining (9,0) and (10,0) zigzag boron nanotubes, we found new types of radially
constricted BNTs (C–type isomers). These isomers are energetically favored
over the previously known BNT modifications (see column ∆Ecoh in Tab. 1),
and their structures are qualitatively different from all BNTs reported so far,
because it cannot be derived from simply rolling up a quasiplanar reference
sheet on a cylinder. The Cn symmetry of these structures looks like a compro-
mise between the symmetry of the zigzag BNTs and the symmetry constraints
imposed by their arrangement within a hexagonal tubular network (see above).
Therefore we conjecture that the constriction of the C–type isomers are most
likely due to the special boundary conditions imposed during the formation
of nanoropes, which lead to novel structures, quite different from structures
predicted for isolated BNTs.

Furthermore the constriction of zigzag BNTs produces bumps formed by five
atoms per supercell sitting at the corners of a imaginary 6–ring, similar to
structural motives found within B12 icosahedra. Therefore these structures
may be look upon as intermediate structures between ideal nanotubular boron
systems and the known bulk phases of boron based on B12–icosahedra, con-
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firming a general Aufbau principle for boron structures suggested by Boustani
[18].

We hope that our results will inspire further experimental work on BNTs
going beyond the pioneering work of Ciuparu et al. [13]. Metallic nanotubular
materials with versatile structural and chemical properties may allow for many
interesting applications within nanotechnology.
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Table 1
Structural data and stabilities. Cn: rotational symmetry, n: number of atoms per

supercell, (a, b, c)h/m: lattice constants a, b, c of the hexagonal or monoclinic (index

h or m) supercell in Å, aintra
B−B

, ainter
B−B

: range of bond lengths in Å of intratubular
and intertubular bonds, respectively, Ecoh: cohesive energies in eV/atom, ∆Ecoh:
energies relative to the most stable isomer of each system in eV/atom.

System Isomer Cn n (a, b, c)h/m aintra
B−B

ainter
B−B

Ecoh ∆Ecoh

(6,0) A C6 12 (8.18,8.18,1.65)h 1.65 . . . 1.78 − 6.87 −

(9,0) A C3 54 (11.3,11.3,4.89)h 1.63 . . . 1.80 − 6.81 0.19

B C3 18 (10.93,10.93,1.61)h 1.61 . . . 1.83 − 6.91 0.09

C C3 54 (10.15,10.15,4.85)h 1.62 . . . 1.86 1.95 7.00 −

(10,0) B C2 20 (10.45,11.81,1.68)m 1.68 . . . 1.90 1.71, 1.96 6.91 0.06

C C2 20 (11.46,10.46,1.64)m 1.64 . . . 1.82 1.84, 2.00 6.97 −

(a)

a2

a1

W

2

4

5 10 15 20 25

(b)
a2 bc

b2 ac
a1b1

W

1
2
3
4
5

5 10 15 20 25 30

Fig. 1. Constructing the supercells for the simulation of various nanotubes: (10,0)
sheets for (a) a carbon nanotube and (b) a boron nanotube. Also shown are the
wrapping vector W , the basis vectors a1 and a2 of a honeycomb lattice and b1 and
b2 of a hexagonal lattice, and ca, cb, which are the different heights of the supercells.
The dashed lines indicate that for zigzag systems ca = 3cb. Units are Å.
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Fig. 2. Top view of the only isomer of the (6,0) zigzag system in its supercell. The
big spheres stand for the upper atoms and the small ones for the lower atoms (with
respect to the z–direction).
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Fig. 3. Top view of three isomers of the (9,0) system placed around the center of
their supercells. In (C), each of the six additional thick lines point towards two

atoms in the adjacent supercells within a distance of 1.95 Å.
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Fig. 4. Two isomers of the (10,0) system in top view located around the center
of their their monoclinic supercells. The additional lines point in the direction of
nearest neighbors: a thin line symbolizes a single neighbor, a thick line two nearest
neighbors. Isomer (B) has two intertubular bonds with aB−B = 1.71 Å, whereas
the remaining outward pointing lines indicate atoms within a distance of 1.96 Å.
Isomer (C) has four intertubular bonds (aB−B = 1.84 Å) and there are four atoms
in neighboring supercells, which are 2.00 Å apart.
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